Analog modulation:
- Amplitude modulation (AM) - the amplitude (signal strength) of the wave is varied in proportion to that of the message signal, such as an audio signal. This technique contrasts with angle modulation, in which either the frequency of the carrier wave is varied, as in frequency modulation, or its phase, as in phase modulation. AM remains in use in many forms of communication in addition to AM broadcasting: shortwave radio, amateur radio, two-way radios, VHF aircraft radio, citizens band radio, and in computer modems in the form of quadrature amplitude modulation (QAM).
- Frequency modulation (FM) - the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and computing. Frequency modulation is widely used for FM radio broadcasting. It is also used in telemetry, radar, seismic prospecting, and monitoring newborns for seizures via EEG, two-way radio systems, sound synthesis, magnetic tape-recording systems and some video-transmission systems. In radio transmission, an advantage of frequency modulation is that it has a larger signal-to-noise ratio and therefore rejects radio frequency interference better than an equal power amplitude modulation (AM) signal. For this reason, most music is broadcast over FM radio.
- Phase modulation (PM) - a modulation pattern for conditioning communication signals for transmission. It encodes a message signal as variations in the instantaneous phase of a carrier wave. Phase modulation is one of the two principal forms of angle modulation, together with frequency modulation. Phase modulation is an integral part of many digital transmission coding schemes that underlie a wide range of technologies like Wi-Fi, GSM and satellite television. However it is not widely used for transmitting analog audio signals via radio waves. It is also used for signal and waveform generation in digital synthesizers, such as the Yamaha DX7, to implement FM synthesis. A related type of sound synthesis called phase distortion is used in the Casio CZ synthesizers.
- Quadrature amplitude modulation (QAM) - conveys two analog message signals, or two digital bit streams, by changing (modulating) the amplitudes of two carrier waves, using the amplitude-shift keying (ASK) digital modulation scheme or amplitude modulation (AM) analog modulation scheme. The two carrier waves are of the same frequency and are out of phase with each other by 90°, a condition known as orthogonality or quadrature. The transmitted signal is created by adding the two carrier waves together. At the receiver, the two waves can be coherently separated (demodulated) because of their orthogonality. Another key property is that the modulations are low-frequency/low-bandwidth waveforms compared to the carrier frequency, which is known as the narrowband assumption.
- Space modulation (SM) - radio amplitude modulation technique used in instrument landing systems (ILS) that incorporates the use of multiple antennas fed with various radio frequency powers and phases to create different depths of modulation within various volumes of three-dimensional airspace. This modulation method differs from internal modulation methods inside most other radio transmitters in that the phases and powers of the two individual signals mix within airspace, rather than in a modulator. The ILS uses two radio frequencies, one for each ground station (about 110 MHz for LOC and 330 MHz for the GS), to transmit two amplitude-modulated signals (90 Hz and 150 Hz), along the glidepath (GS) and the course (LOC) trajectories into airspace. It is this signal that is projected up from the runway which an aircraft employing an instrument approach uses to land.
- single-sideband modulation (SSB) - a type of modulation used to transmit information, such as an audio signal, by radio waves. A refinement of amplitude modulation, it uses transmitter power and bandwidth more efficiently. Amplitude modulation produces an output signal the bandwidth of which is twice the maximum frequency of the original baseband signal. Single-sideband modulation avoids this bandwidth increase, and the power wasted on a carrier, at the cost of increased device complexity and more difficult tuning at the receiver. It's divided to lower side band (LSB) and upper side band (USB).
Digital modes:
- Amplitude-shift keying (ASK) - a form of amplitude modulation that represents digital data as variations in the amplitude of a carrier wave.[1] In an ASK system, a symbol, representing one or more bits, is sent by transmitting a fixed-amplitude carrier wave at a fixed frequency for a specific time duration. Any digital modulation scheme uses a finite number of distinct signals to represent digital data. ASK uses a finite number of amplitudes, each assigned a unique pattern of binary digits. Usually, each amplitude encodes an equal number of bits. Each pattern of bits forms the symbol that is represented by the particular amplitude. The demodulator, which is designed specifically for the symbol-set used by the modulator, determines the amplitude of the received signal and maps it back to the symbol it represents, thus recovering the original data. Frequency and phase of the carrier are kept constant. Like AM, an ASK is also linear and sensitive to atmospheric noise, distortions, propagation conditions.
- Amplitude and phase-shift keying (APSK) - a digital modulation scheme that conveys data by modulating both the amplitude and the phase of a carrier wave. In other words, it combines both amplitude-shift keying (ASK) and phase-shift keying (PSK). This allows for a lower bit error rate for a given modulation order and signal-to-noise ratio, at the cost of increased complexity, compared to ASK or PSK alone.
- Continuous phase modulation (CPM) - a method for modulation of data commonly used in wireless modems. In contrast to other coherent digital phase modulation techniques where the carrier phase abruptly resets to zero at the start of every symbol (e.g. M-PSK), with CPM the carrier phase is modulated in a continuous manner.
- Frequency-shift keying (FSK) - a frequency modulation scheme in which digital information is encoded on a carrier signal by periodically shifting the frequency of the carrier between several discrete frequencies. The technology is used for communication systems such as telemetry, weather balloon radiosondes, caller ID, garage door openers, and low frequency radio transmission in the VLF and ELF bands. The simplest FSK is binary FSK (BFSK, which is also commonly referred to as 2FSK or 2-FSK), in which the carrier is shifted between two discrete frequencies to transmit binary (0s and 1s) information.
- Multiple frequency-shift keying (MFSK) - a variation of frequency-shift keying (FSK) that uses more than two frequencies. MFSK is a form of M-ary orthogonal modulation, where each symbol consists of one element from an alphabet of orthogonal waveforms. M, the size of the alphabet, is usually a power of two so that each symbol represents log2 M bits. In a M-ary signaling system like MFSK, an "alphabet" of M tones is established and the transmitter selects one tone at a time from the alphabet for transmission. M is usually a power of 2, so each tone transmission from the alphabet represents log2 M data bits.
- minimum-shift keying (MSK) - is encoded with bits alternating between quadrature components, with the Q component delayed by half the symbol period. MSK encodes each bit as a half sinusoid. This results in a constant-modulus signal (constant envelope signal), which reduces problems caused by non-linear distortion.
- On–off keying (OOK) - the simplest form of amplitude-shift keying (ASK) modulation that represents digital data as the presence or absence of a carrier wave. In its simplest form, the presence of a carrier for a specific duration represents a binary one, while its absence for the same duration represents a binary zero. Some more sophisticated schemes vary these durations to convey additional information. It is analogous to unipolar encoding line code. On–off keying is most commonly used to transmit Morse code over radio frequencies (referred to as CW (continuous wave) operation), although in principle any digital encoding scheme may be used. OOK has been used in the ISM bands to transfer data between computers, for example.
- Pulse-position modulation (PPM) - a form of signal modulation in which M message bits are encoded by transmitting a single pulse in one of 2^M possible required time shifts. This is repeated every T seconds, such that the transmitted bit rate is M/T bits per second. It is primarily useful for optical communications systems, which tend to have little or no multipath interference.
- Phase-shift keying (PSK) - a digital modulation process which conveys data by changing (modulating) the phase of a constant frequency carrier wave. The modulation is accomplished by varying the sine and cosine inputs at a precise time. It is widely used for wireless LANs, RFID and Bluetooth communication.
- Single-carrier FDMA (SC-FDMA) - a frequency-division multiple access scheme. Originally known as Carrier Interferometry, it is also called __linearly precoded OFDMA (LP-OFDMA). __ For each user, the sequence of bits transmitted is mapped to a complex constellation of symbols (BPSK, QPSK, or M-QAM). Then different transmitters (users) are assigned different Fourier coefficients. This assignment is carried out in the mapping and demapping blocks. The receiver side includes one demapping block, one IDFT block, and one detection block for each user signal to be received. Just like in OFDM, guard intervals (called cyclic prefixes) with cyclic repetition are introduced between blocks of symbols in view to efficiently eliminate inter-symbol interference from time spreading (caused by multi-path propagation) among the blocks.
- Trellis coded modulation (TCM) - a modulation scheme that transmits information with high efficiency over band-limited channels such as telephone lines.
- Trellis-coded pulse-amplitude modulation (TC-PAM) - modulation format that is used in HDSL2 and G.SHDSL. It is a variant of trellis coded modulation (TCM) which uses a one-dimensional pulse-amplitude modulation (PAM) symbol space, as opposed to a two-dimensional quadrature amplitude modulation (QAM) symbol space. Compared to the 2B1Q scheme used in the older HDSL and SDSL standards, TC-PAM improves range at a given bit-rate and provides enhanced spectral compatibility with ADSL.
- Wavelet modulation, also known as fractal modulation, is a modulation technique that makes use of wavelet transformations to represent the data being transmitted. One of the objectives of this type of modulation is to send data at multiple rates over a channel that is unknown. If the channel is not clear for one specific bit rate, meaning that the signal will not be received, the signal can be sent at a different bit rate where the signal-to-noise ratio is higher.
jan 25 2025 ∞
jan 25 2025 +